Aide en ligne avec WhatsApp*, un professeur est à vos côtés à tout moment! Essayez!
Un cours particulier à la demande!
Envoyez un message WhatsApp au 07 67 45 85 81 en précisant votre nom d'utilisateur.*période d'essai ou abonnés premium(aide illimitée, accès aux PDF et suppression de la pub)
$ABCDEFGH$ est un cube de côté $a$ et $I$ et $J$ sont les milieux respectifs de $[AB]$ et $[CG]$.
Attention les fonctions ci-dessus sont désactivées en mode "visiteur", créez un compte MATHS-LYCEE.FR (gratuit)
- Calculer $\overrightarrow{IJ}.\overrightarrow{HG}$.
relation de Chasles
$\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}$Orthogonalité et produit scalaire
Pour tous vecteurs $\overrightarrow{u}$ et $\overrightarrow{v}$, on a:
$\overrightarrow{u}.\overrightarrow{v}=0 \Longleftrightarrow \overrightarrow{u}=\overrightarrow{0}$ ou $\overrightarrow{v}=\overrightarrow{0}$ ou $\overrightarrow{u}$ et $\overrightarrow{v}$ sont orthogonaux.$\overrightarrow{IJ}=\overrightarrow{·IB}+\overrightarrow{BC}+\overrightarrow{CJ}$$\overrightarrow{IJ}.\overrightarrow{HG}$
$=(\overrightarrow{IB}+\overrightarrow{BC}+\overrightarrow{CJ}).\overrightarrow{HG}$
$=\overrightarrow{IB}.\overrightarrow{HG}+\overrightarrow{BC}.\overrightarrow{HG}+\overrightarrow{CJ}.\overrightarrow{HG}$
$=\dfrac{1}{2}\overrightarrow{AB}.\overrightarrow{AB}+\overrightarrow{BC}.\overrightarrow{DC}+\dfrac{1}{2}\overrightarrow{CG}.\overrightarrow{HG}$
$=\dfrac{1}{2}AB^2+0+0$ car $(AB)$ et $(BC) $ sont perpendiculaires et $(CG)$ et $(HG)$ sont perpendiculaires
- Calculer $\overrightarrow{IJ}.\overrightarrow{GB}$.
$\overrightarrow{GB}=\overrightarrow{GC}+\overrightarrow{CB}$$\overrightarrow{IJ}.\overrightarrow{GB}$
$=(\overrightarrow{IB}+\overrightarrow{BC}+\overrightarrow{CJ}).(\overrightarrow{GC}+\overrightarrow{CB})$
$=\overrightarrow{IB}.\overrightarrow{GC}+\overrightarrow{BC}.\overrightarrow{GC}+\overrightarrow{CJ}.\overrightarrow{GC} +\overrightarrow{IB}.\overrightarrow{CB}+\overrightarrow{BC}.\overrightarrow{CB}+\overrightarrow{CJ}.\overrightarrow{CB}$
$=\dfrac{1}{2}\overrightarrow{AB}.\overrightarrow{FB}+0+\dfrac{1}{2}\overrightarrow{CG}.\overrightarrow{GC} +\dfrac{1}{2}\overrightarrow{AB}.\overrightarrow{CB}+\overrightarrow{BC}.\overrightarrow{CB}+\dfrac{1}{2}\overrightarrow{CG}.\overrightarrow{CB}$
$=0+0-\dfrac{1}{2}GC^2 +0-BC^2+0$
$=-\dfrac{a^2}{2}-a^2$
$=-\dfrac{3}{2}a^2$
- En déduire $\overrightarrow{IJ}.\overrightarrow{HB}$
On peut décomposer $\overrightarrow{HB}=\overrightarrow{HC}+\overrightarrow{CB}$$\overrightarrow{IJ}.\overrightarrow{HB}$
$=\overrightarrow{IJ}.(\overrightarrow{HG}+\overrightarrow{GB})$
$=\overrightarrow{IJ}.\overrightarrow{HG}+\overrightarrow{IJ}.\overrightarrow{GB}$
$=\dfrac{a^2}{2}-\dfrac{3}{2}a^2$
$=-a^2$
Attention les fonctions ci-dessus sont désactivées en mode "visiteur", créez un compte MATHS-LYCEE.FR (gratuit)
exercices semblables
Si vous souhaitez vous entraîner un peu plus, nous vous conseillons ces exercices.