Aide en ligne avec WhatsApp*, un professeur est à vos côtés à tout moment! Essayez!
Un cours particulier à la demande!
Envoyez un message WhatsApp au 07 67 45 85 81 en précisant votre nom d'utilisateur.*période d'essai ou abonnés premium(aide illimitée, accès aux PDF et suppression de la pub)
$ABCDEFGH$ est un cube.
Attention les fonctions ci-dessus sont désactivées en mode "visiteur", créez un compte MATHS-LYCEE.FR (gratuit)
- Construire le point $M$ tel que $\overrightarrow{AM}=\overrightarrow{EH}+\overrightarrow{AF}$
relation de Chasles
$\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}$On a $\overrightarrow{EH}=\overrightarrow{FG}$$\overrightarrow{EH}=\overrightarrow{FG}$
$\overrightarrow{AM}=\overrightarrow{EH}+\overrightarrow{AF}$
$\phantom{\overrightarrow{AM}}=\overrightarrow{FG}+\overrightarrow{AF}$
$\phantom{\overrightarrow{AM}}=\overrightarrow{AF}+\overrightarrow{FG}$
$\phantom{\overrightarrow{AM}}=\overrightarrow{AG}$
- Construire le point $N$ tel que $\overrightarrow{AN}=-\overrightarrow{BC}+\overrightarrow{EG}$
relation de Chasles
$\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}$On a $\overrightarrow{EG}=\overrightarrow{AC}$$\overrightarrow{EG}=\overrightarrow{AC}$
$\overrightarrow{AN}=-\overrightarrow{BC}+\overrightarrow{EG}$
$\phantom{\overrightarrow{AN}}=\overrightarrow{CB}+\overrightarrow{EG}$
$\phantom{\overrightarrow{AN}}=\overrightarrow{CB}+\overrightarrow{AC}$
$\phantom{\overrightarrow{AN}}=\overrightarrow{AC}+\overrightarrow{CB}$
$\phantom{\overrightarrow{AN}}=\overrightarrow{AB}$
- Construire le point $O$ tel que $\overrightarrow{AO}=\overrightarrow{EB}+\overrightarrow{DG}$ puis montrer que $\overrightarrow{AO}=2\overrightarrow{AB}$
$\overrightarrow{EB}=\overrightarrow{EA}+\overrightarrow{AB}$ et $\overrightarrow{DG}=\overrightarrow{DH}+\overrightarrow{HG}$construction de $\overrightarrow{AO}$
$\overrightarrow{AO}=\overrightarrow{EB}+\overrightarrow{DG}$
$\phantom{\overrightarrow{AO}}=\overrightarrow{EA}+\overrightarrow{AB}+\overrightarrow{DH}+\overrightarrow{HG}$
$\phantom{\overrightarrow{AO}}=\overrightarrow{EA}+\overrightarrow{AB}+\overrightarrow{AE}+\overrightarrow{AB}$ (on a $\overrightarrow{DH}=\overrightarrow{AE}$ et $\overrightarrow{HG}=\overrightarrow{AB}$)
$\phantom{\overrightarrow{AO}}=\overrightarrow{AB}+\overrightarrow{AB}$
$\phantom{\overrightarrow{AO}}=2\overrightarrow{AB}$
Attention les fonctions ci-dessus sont désactivées en mode "visiteur", créez un compte MATHS-LYCEE.FR (gratuit)
exercices semblables
Si vous souhaitez vous entraîner un peu plus, nous vous conseillons ces exercices.