Infos

Vous devez être inscrit pour accéder à ces informations.

Ceci vous permet de visualiser les ressources déjà vues et marquer à revoir celles qui nécessitent d'être retravaillées.

Inscrivez vous gratuitement ici....

Contenu

Déterminer une équation paramétrique de droite

Déterminer si un point appartient à une droite définie par son équation paramétrique

Exercice | temps recommandé inférieur à 5mn | Niveau 1 application directe du cours | séquence 2 du chapitre |

Vidéo de l’exercice

L'espace est muni d'un repère $(O;\overrightarrow{i};\overrightarrow{j};\overrightarrow{k})$ et on donne les points $A(2;3;1)$ et $B(-1;4;2)$.
  1. Déterminer une équation paramétrique de la droite $(AB)$.
    Rappel cours

    Coordonnées d'un vecteur dans l'espace
    L'espace est muni d'un repère quelconque.
    Soit $A(x_A;y_A;z_A)$ et $B(x_B;y_B;z_B)$
    $\overrightarrow{AB}\begin{pmatrix} x_B-x_A\\ y_B-y_A\\ z_B-z_A \end{pmatrix} $
    Représentation paramétrique d'une droite
    Dans l'espace muni d'un repère, la droite passant par $A(x_A;y_A;z_A)$ et de vecteur directeur $\overrightarrow{u}\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}$ a pour représentation paramétrique $ \begin{cases} x=x_A+tu_1\\ y=y_A+tu_2\\ z=z_A+tu_3 \end{cases}$

    Solution

    Vous devez être inscrit pour accéder à ce contenu gratuitement!
    INSCRIPTION

  2. Le point $C(-4;5;2)$ appartient-il à la droite $(AB)$?
    Aide

    Il faut déterminer s'il existe un réel tel que les coordonnées de $C$ vérifient l'équation de $(AB)$

    Solution

    Vous devez être inscrit pour accéder à ce contenu gratuitement!
    INSCRIPTION


Inscrivez-vous pour accéder à ce contenu gratuitement!

INSCRIPTION

Vidéo de l’exercice

Retour sur le corrigé