Infos

Vous devez être inscrit pour accéder à ces informations.

Ceci vous permet de visualiser les ressources déjà vues et marquer à revoir celles qui nécessitent d'être retravaillées.

Inscrivez vous gratuitement ici....

Contenu

Équation du second degré dans R

Équation bicarrée dans C

Changement de variable $Z=z^2$

Exercice | temps recommandé inférieur à 5mn | Niveau 1 application directe du cours | séquence 2 du chapitre |

Vidéo de l’exercice

  1. Résoudre dans $\mathbb{C}$ l'équation $z^2+2z-3=0$
    Rappel cours

    Équations du second degré à coefficients réels
    équation du second degré à coefficients réels
    Discriminant: $\Delta=b^2-4ac$
    - Si $\Delta \geq 0$, on résout dans $\mathbb{R}$
    Si $\Delta >0 $ il y a 2 racines $z_1=\dfrac{-b-\sqrt{\Delta}}{2a}$ et $z_2=\dfrac{-b+\sqrt{\Delta}}{2a}$
    Si $\Delta <0$ alors on a deux racines complexes conjuguées:
    $z_1=\dfrac{-b-i\sqrt{|\Delta|}}{2a}$ et $z_2=\dfrac{-b+i\sqrt{|\Delta|}}{2a}=\overline{z_1}$

    Solution

    Vous devez être inscrit pour accéder à ce contenu gratuitement!
    INSCRIPTION

  2. En déduire les solutions complexes de l'équation $z^4+2z^2-3=0$
    Aide

    On peut poser $Z=z^2$ et utiliser la question 1

    Solution

    Vous devez être inscrit pour accéder à ce contenu gratuitement!
    INSCRIPTION


Inscrivez-vous pour accéder à ce contenu gratuitement!

INSCRIPTION

Vidéo de l’exercice

Retour sur le corrigé
Vous devez être abonné pour accéder à ce contenu...

Infos abonnements