Infos
Vous devez être inscrit pour accéder à ces informations.
Ceci vous permet de visualiser les ressources déjà vues et marquer à revoir celles qui nécessitent d'être retravaillées.
Contenu
Calcul du produit scalaire (angle, projeté orthogonal, dans un triangle)
Ressources associées et exercices semblables
Utiliser la bonne expression du produit scalaire (réf 0762)
exercice
Utiliser les différentes expressions du produit scalaire (réf 0764)
exercice
Aide mémoire les différentes expressions du produit scalaire (réf 0805)
mémo
Vidéo de l’exercice
- $ABC$ est un triangle isocèle en $C$ tel que $AB=8$cm
Rappel cours
Produit scalaire et projeté orthogonal
Soit $A$, $B$ et $C$ trois points ($A$ et $B$ distincts) et $\overrightarrow{u}=\overrightarrow{AB}$ et $\overrightarrow{v}=\overrightarrow{AC}$.
Si $H$ est le projeté orthogonal de $C$ sur $(AB)$:
$\overrightarrow{u}.\overrightarrow{v}=AB\times AH$ si $\widehat{BAH}=0$ (soit $\widehat{BAC}$ aigu)
et $\overrightarrow{u}.\overrightarrow{v}=-AB\times AH$ si $\widehat{BAH}=\pi$ (soit $\widehat{BAC}$ obtus)Aide
On peut utiliser le projeté orthogonal de $C$ sur $(AB)$
Solution
Vous devez être abonné pour accéder à ce contenu...
Infos abonnements - $ABC$ est un triangle tel que $AB=6$cm, $AC=5$cm et $BC=7$cm.
Rappel cours
Produit scalaire avec les normes
Pour tous vecteurs $\overrightarrow{u}=\overrightarrow{AB}$ et $\overrightarrow{v}=\overrightarrow{AC}$ on a:
$\overrightarrow{u}.\overrightarrow{v}=\dfrac{\mid \mid \overrightarrow{u}\mid \mid^2+\mid \mid \overrightarrow{v}\mid \mid^2-\mid \mid \overrightarrow{u}-\overrightarrow{v}\mid \mid^2}{2}$
Dans le triangle $ABC$: $\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{AB^2+AC^2-BC^2}{2}$Aide
Utiliser les côtés du triangle ABC
Solution
Vous devez être abonné pour accéder à ce contenu...
Infos abonnements - $ABC$ st un triangle isocèle en $A$ tel que $AB=6$cm et $\widehat{BAC}=45^o$
Rappel cours
Produit scalaire (définition)
$\overrightarrow{u}$ et $\overrightarrow{v}$ sont deux vecteurs non nuls tels que $\overrightarrow{u}=\overrightarrow{AB}$ et $\overrightarrow{v}=\overrightarrow{AC}$, le produit scalaire des deux vecteurs est noté $\overrightarrow{u}.\overrightarrow{v}$,et est le nombre réel défini par:
$\overrightarrow{u}.\overrightarrow{v}=\mid \mid \overrightarrow{u}\mid \mid\times \mid \mid \overrightarrow{v}\mid \mid \times cos(\widehat{BAC})=AB\times AC\times cos(\widehat{BAC})$Solution
Vous devez être abonné pour accéder à ce contenu...
Infos abonnements