Infos

Vous devez être inscrit pour accéder à ces informations.

Ceci vous permet de visualiser les ressources déjà vues et marquer à revoir celles qui nécessitent d'être retravaillées.

Inscrivez vous gratuitement ici....

Contenu

Vecteur directeur et vecteur normal à une droite

Équation cartésienne d’une perpendiculaire

Exercice | temps recommandé entre 5 et 10mn | Niveau 1 application directe du cours | séquence 2 du chapitre |

Vidéo de l’exercice

Le plan est muni d'un repère orthonormé.
  1. On donne la droite $(d)$ d'équation $2x-3y+1=0$.
    Donner les coordonnées d'un vecteur directeur $ \overrightarrow{u}$ de $(d)$ puis tracer $(d)$.
    Rappel cours

    Vecteur directeur dans un repère
    Dans un repère du plan, la droite $(d)$ a pour équation cartésienne $ax+by+c=0$ alors $\overrightarrow{u}\begin{pmatrix}-b\\a\end{pmatrix}$ est un vecteur directeur de $(d)$.
    Si $(d)$ est définie par son équation réduite $y=ax+b$, $\overrightarrow{u}\begin{pmatrix}1\\a\end{pmatrix}$ est un vecteur directeur de $(d)$.

    Aide

    Pour tracer $(d)$ on peut chercher l'équation réduite de $(d)$ (forme $y=ax+b$) en isolant $y$ et en déterminant ensuite les coordonnées de deux points de la droite.
    On peut aussi chercher $y$ lorsque $x=0$ puis utiliser le vecteur $ \overrightarrow{u}$.

    Solution

    Vous devez être abonné pour accéder à ce contenu...
    Infos abonnements

  2. Déterminer les coordonnées d'un vecteur $ \overrightarrow{v}$ normal à la droite $(d)$.
    Rappel cours

    Vecteur normal
    Le plan est muni d'un repère orthonormé.
    Soit $(d)$ une droite, $\overrightarrow{n}$ est un vecteur normal à $(d)$ si $\overrightarrow{v}$ est orthogonal à tout vecteur directeur de $(d)$.
    Si $ax+by+c=0$ est une équation cartésienne de $(d)$ alors$\overrightarrow{n}\begin{pmatrix}a\\b\end{pmatrix}$

    Solution

    Vous devez être abonné pour accéder à ce contenu...
    Infos abonnements

  3. En déduire une équation cartésienne de $(d')$ perpendiculaire à $(d)$ passant par $I(1;2)$
    Aide

    Si $ \overrightarrow{v}\begin{pmatrix}2\\-3\end{pmatrix}$ est un vecteur directeur de $(d')$ alors $-x_{ \overrightarrow{v}}$ est le coefficient de $y$ et $y_{ \overrightarrow{v}}$ est le coefficient de $x$ dans une équation cartésienne de $(d')$

    Solution

    Vous devez être abonné pour accéder à ce contenu...
    Infos abonnements


Vous devez être abonné pour accéder à ce contenu...

Infos abonnements

Vidéo de l’exercice

Retour sur le corrigé
Vous devez être abonné pour accéder à ce contenu...

Infos abonnements

error: Ce contenu est protégé