Infos

Vous devez être inscrit pour accéder à ces informations.

Ceci vous permet de visualiser les ressources déjà vues et marquer à revoir celles qui nécessitent d'être retravaillées.

Inscrivez vous gratuitement ici....

Contenu

Utilisation des propriétés du logarithme

Exercice | temps recommandé inférieur à 5mn | Niveau 1 application directe du cours | séquence 1 du chapitre |

Vidéo de l’exercice

Écrire sous la forme $aln(b)+c$ avec $a$ et $c$ réels et $b\in]0;+\infty[$
  1. $ln(25)+2ln(e^2)-ln(5e)$
    Rappel cours

    Propriétés algébriques du logarithme
    Pour tous réels $a$ et $b$ strictement positifs, on a:
    $ln(ab)=ln(a)+ln(b)$
    $ln\left(\dfrac{a}{b}\right)=ln(a)-ln(b)$
    $ln\left(\dfrac{1}{b}\right)=-ln(b)$
    $ln(\sqrt{a})=\dfrac{1}{2}ln(a)$
    pour tout entier naturel $n >0$ on a $ln\left(a^n\right)=nln(a)$

    Solution

    Vous devez être inscrit pour accéder à ce contenu gratuitement!
    INSCRIPTION

  2. $ln(\sqrt{7})+ln(49)+ln(7e)$
    Solution

    Vous devez être inscrit pour accéder à ce contenu gratuitement!
    INSCRIPTION


Inscrivez-vous pour accéder à ce contenu gratuitement!

INSCRIPTION

Vidéo de l’exercice

Retour sur le corrigé
Vous devez être abonné pour accéder à ce contenu...

Infos abonnements