Infos

Vous devez être inscrit pour accéder à ces informations.

Ceci vous permet de visualiser les ressources déjà vues et marquer à revoir celles qui nécessitent d'être retravaillées.

Inscrivez vous gratuitement ici....

Contenu

Équation paramétrique d’une droite et vecteur directeur

Vecteur normal à un plan

Équation d’un plan orthogonal à une droite

Exercice | temps recommandé inférieur à 5mn | Niveau 1 application directe du cours | séquence 4 du chapitre |

Vidéo de l’exercice

Dans un repère orthonormé de l'espace, la droite $(d)$ apour représentation paramétrique $\begin{cases}x=2-3t\\y=3+t\\z=1+2t\end{cases}$ avec $t\in \mathbb{R}$ et $A(1;3;5)$.
Déterminer une équation cartésienne du plan $P$ orthogonal à la droite $(d)$ passant par $A$.
Rappel cours

Représentation paramétrique d'une droite
Dans l'espace muni d'un repère, la droite passant par $A(x_A;y_A;z_A)$ et de vecteur directeur $\overrightarrow{u}\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}$ a pour représentation paramétrique $ \begin{cases} x=x_A+tu_1\\ y=y_A+tu_2\\ z=z_A+tu_3 \end{cases}$
Vecteur normal à un plan-équation cartésienne d'un plan
Dans l'espace muni d'un repère othonormé, $P$ est un plan de l'espace, un vecteur $\overrightarrow{n}$ normal à $P$ est un vecteur directeur d'une droite orthogonale à $P$.
Le vecteur $\overrightarrow{n}$ est un vecteur normal au plan $P$ passant par $A$ et $P$ est l'ensemble des points $M(x;y;z)$ vérifiant $\overrightarrow{AM}.\overrightarrow{n}=0$.
$ax+by+cz+d=0$ est une équation cartésienne de $P$ de vecteur normal $\overrightarrow{n}\begin{pmatrix} a\\ b\\ c \end{pmatrix}$

Aide

Un vecteur directeur de $(d)$ est un vecteur normal au plan.

Solution

Vous devez être inscrit pour accéder à ce contenu gratuitement!
INSCRIPTION


Inscrivez-vous pour accéder à ce contenu gratuitement!

INSCRIPTION

Vidéo de l’exercice

Retour sur le corrigé
Vous devez être abonné pour accéder à ce contenu...

Infos abonnements