Infos

Vous devez être inscrit pour accéder à ces informations.

Ceci vous permet de visualiser les ressources déjà vues et marquer à revoir celles qui nécessitent d'être retravaillées.

Inscrivez vous gratuitement ici....

Contenu

Justifier que trois points définissent un plan

Justifier qu’un vecteur est normal à un plan

Déterminer une équation d’un plan

Exercice | temps recommandé inférieur à 5mn | Niveau 1 application directe du cours | séquence 4 du chapitre |
Dans un repère orthonormé de l'espace, on donne $A(1;1;3)$, $B(-3;1;1)$ et $C(-1;0;1)$.
  1. Montrer que les points $A$, $B$ et $C$ définissent bien un plan.
    Rappel cours

    Coordonnées d'un vecteur dans l'espace
    L'espace est muni d'un repère quelconque.
    Soit $A(x_A;y_A;z_A)$ et $B(x_B;y_B;z_B)$
    $\overrightarrow{AB}\begin{pmatrix} x_B-x_A\\ y_B-y_A\\ z_B-z_A \end{pmatrix} $
    caractérisation vectorielle d'un plan
    Soit $A$ et les vecteurs $\overrightarrow{u}$ et $\overrightarrow{v}$ non colinéaires de l'espace, l'ensemble des points $M$ tels que $\overrightarrow{AM}=x\overrightarrow{u}+y\overrightarrow{v}$ avec $x$ et $y$ réels est le plan $(ABC)$ avec $\overrightarrow{AB}=\overrightarrow{u}$ et $\overrightarrow{AC}=\overrightarrow{v}$.
    $\overrightarrow{u}$ et $\overrightarrow{v}$ sont des vecteurs directeurs du plan $(ABC)$

    Aide

    Il faut vérifier que les vecteurs $\overrightarrow{AB}$ et $\overrightarrow{AC}$ ne sont pas colinéaires.

    Solution

    Vous devez être inscrit pour accéder à ce contenu gratuitement!
    INSCRIPTION

  2. Vérifier que le vecteur $\overrightarrow{n}\begin{pmatrix} 1\\ 2\\ -2 \end{pmatrix} $ est un vecteur normal au plan $(ABC)$
    Rappel cours

    Vecteur normal à un plan-équation cartésienne d'un plan
    Dans l'espace muni d'un repère othonormé, $P$ est un plan de l'espace, un vecteur $\overrightarrow{n}$ normal à $P$ est un vecteur directeur d'une droite orthogonale à $P$.
    Le vecteur $\overrightarrow{n}$ est un vecteur normal au plan $P$ passant par $A$ et $P$ est l'ensemble des points $M(x;y;z)$ vérifiant $\overrightarrow{AM}.\overrightarrow{n}=0$.
    $ax+by+cz+d=0$ est une équation cartésienne de $P$ de vecteur normal $\overrightarrow{n}\begin{pmatrix} a\\ b\\ c \end{pmatrix}$

    Aide

    Il faut vérifier que le vecteur normal $\overrightarrow{n}$ est orthogonal aux vecteurs $\overrightarrow{AB}$ et $\overrightarrow{AC}$

    Solution

    Vous devez être inscrit pour accéder à ce contenu gratuitement!
    INSCRIPTION

  3. En déduire une équation cartésienne de $(ABC)$.
    Rappel cours

    Vecteur normal à un plan-équation cartésienne d'un plan
    Dans l'espace muni d'un repère othonormé, $P$ est un plan de l'espace, un vecteur $\overrightarrow{n}$ normal à $P$ est un vecteur directeur d'une droite orthogonale à $P$.
    Le vecteur $\overrightarrow{n}$ est un vecteur normal au plan $P$ passant par $A$ et $P$ est l'ensemble des points $M(x;y;z)$ vérifiant $\overrightarrow{AM}.\overrightarrow{n}=0$.
    $ax+by+cz+d=0$ est une équation cartésienne de $P$ de vecteur normal $\overrightarrow{n}\begin{pmatrix} a\\ b\\ c \end{pmatrix}$

    Aide

    Les coefficients de $x$, $y$ et $z$ dans $ax+by+cz+d=0$ sont donnés par les coordonnées d'un vecteur normal au plan $(ABC)$ et on détermine $d$ en utilisant les coordonnées du point $A$ par exemple

    Solution

    Vous devez être inscrit pour accéder à ce contenu gratuitement!
    INSCRIPTION


Inscrivez-vous pour accéder à ce contenu gratuitement!

INSCRIPTION