Infos

Vous devez être inscrit pour accéder à ces informations.

Ceci vous permet de visualiser les ressources déjà vues et marquer à revoir celles qui nécessitent d'être retravaillées.

Inscrivez vous gratuitement ici....

Contenu

Produit scalaire avec les normes

Calcul du troisième côté connaissant deux longueurs et un angle

Exercice | temps recommandé entre 5 et 10mn | Niveau 2 difficulté moyenne | séquence 4 du chapitre |

Vidéo de l’exercice

  1. $ABC$ est un triangle tel que $AB=6$cm et $AC=5$cm et $\widehat{BAC}=\dfrac{\pi}{6}$
    Calculer $BC$
    Rappel cours

    Produit scalaire (définition)
    $\overrightarrow{u}$ et $\overrightarrow{v}$ sont deux vecteurs non nuls tels que $\overrightarrow{u}=\overrightarrow{AB}$ et $\overrightarrow{v}=\overrightarrow{AC}$, le produit scalaire des deux vecteurs est noté $\overrightarrow{u}.\overrightarrow{v}$,et est le nombre réel défini par:
    $\overrightarrow{u}.\overrightarrow{v}=\mid \mid \overrightarrow{u}\mid \mid\times \mid \mid \overrightarrow{v}\mid \mid \times cos(\widehat{BAC})=AB\times AC\times cos(\widehat{BAC})$
    Produit scalaire avec les normes
    Pour tous vecteurs $\overrightarrow{u}=\overrightarrow{AB}$ et $\overrightarrow{v}=\overrightarrow{AC}$ on a:
    $\overrightarrow{u}.\overrightarrow{v}=\dfrac{\mid \mid \overrightarrow{u}\mid \mid^2+\mid \mid \overrightarrow{v}\mid \mid^2-\mid \mid \overrightarrow{u}-\overrightarrow{v}\mid \mid^2}{2}$
    Dans le triangle $ABC$: $\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{AB^2+AC^2-BC^2}{2}$

    Aide

    Calculer $ \overrightarrow{AB}. \overrightarrow{AC}$ en utilisant les distances $AB$, $AC$ et l'angle $\widehat{BAC}$
    Utiliser le rappel de cours ci dessus en calculant $ \overrightarrow{AB}. \overrightarrow{AC}$ puis écrire une équation d'inconnue $BC^2$ en utilisant les deux résultats obtenus pour $ \overrightarrow{AB}. \overrightarrow{AC}$

    Solution

    Vous devez être abonné pour accéder à ce contenu...
    Infos abonnements

  2. $ABC$ est un triangle tel que $AB=6$cm et $AC=2\sqrt{13}$cm et $\widehat{ABC}=\dfrac{\pi}{3}$
    Calculer $BC$
    Rappel cours

    Racines
    Les racines de $p(x)=ax^2+bx+c$ avec$a\neq 0$ sont les valeurs de $x$ annulant $P$
    c'est à dire telles que $P(x)=0$.
    $\Delta=b^2-4ac$
    Si $\Delta>0$ donc il y a deux racine $x_1=\dfrac{-b+\sqrt{\Delta}}{2a}$ et $x_2=\dfrac{-b-\sqrt{\Delta}}{2a}$
    Si $\Delta=0$ il y a une racine (double) $x_1=\dfrac{-b}{2a}$
    Si $\Delta<0$ il n'y a aucune racine
    Remarque: Graphiquement, les racines sont les abscisses des points d'intersection de la parabole et de l'axe des abscisses.

    Aide

    L'angle donné est l'angle de sommet $B$ donc il faut utiliser le produit scalaire des vecteurs $ \overrightarrow{BA}$ et $ \overrightarrow{BC}$
    Calculer $ \overrightarrow{AB}. \overrightarrow{AC}$ en utilisant les distances $AB$, $AC$ et l'angle $\widehat{ABC}$
    Exprimer ensuite $ \overrightarrow{BA}. \overrightarrow{BC}$ en fonction des distances $AB$, $AC$ et $BC$ puis écrire une équation d'inconnue $BC^2$ en utilisant les deux résultats obtenus pour $ \overrightarrow{BA}. \overrightarrow{BC}$

    Solution

    Vous devez être abonné pour accéder à ce contenu...
    Infos abonnements


Vous devez être abonné pour accéder à ce contenu...

Infos abonnements

Vidéo de l’exercice

Retour sur le corrigé
Vous devez être abonné pour accéder à ce contenu...

Infos abonnements