Infos

Vous devez être inscrit pour accéder à ces informations.

Ceci vous permet de visualiser les ressources déjà vues et marquer à revoir celles qui nécessitent d'être retravaillées.

Inscrivez vous gratuitement ici....

Contenu

Calcul de probabilités avec un arbre

Calcul d’une probabilité conditionnelle avec les probabilités totales

Exercice | temps recommandé inférieur à 5mn | Niveau 1 application directe du cours | séquence 2 du chapitre |

Vidéo de l’exercice

Pour chacune des propositions suivantes, dire si la proposition est vraie ou fausse en justifiant la réponse.
L'entreprise MICRO vend en ligne du matériel informatique notamment des ordinateurs portables et des clés USB.
Durant la période de garantie, les deux problèmes les plus fréquemment relevés par le service après-vente portent sur la batterie et sur le disque dur, ainsi :
- Parmi les ordinateurs vendus, 5% ont été retournés pour un défaut de batterie et parmi ceux-ci, 2% ont aussi un disque dur défectueux.
- Parmi les ordinateurs dont la batterie fonctionne correctement, 5% ont un disque dur défectueux.
On suppose que la société MICRO garde constant le niveau de qualité de ses produits.
Suite à l'achat en ligne d'un ordinateur :
  1. Proposition 1: La probabilité que l'ordinateur acheté n'ait ni problème de batterie ni problème de disque dur est égale à 0,08 à 0,01 près.
    Rappel cours

    Probabilité de l'événement $A\cap B$
    Soient $A$ et $B$ deux événements avec $p(A)\neq 0$, on a
    $p(A\cap B)=p(A)\times p_A(B)$

    Solution

    Vous devez être abonné pour accéder à ce contenu...
    Infos abonnements


  2. Proposition 2: La probabilité que l'ordinateur acheté ait un disque dur défectueux est égale à 0,0485
    Rappel cours

    Probabilités totales
    Soient $A_1$, $A_2$,...$A_n$ des événements de l'univers $\Omega$ tels que $p(A_1)\neq 0$, $p(A_2)\neq 0$...$p(A_n)\neq 0$ et $B$ un événements.
    Si $A_1$, $A_2$,...$A_n$ sont deux à deux disjoints et que leur réunion forme l'univers $\Omega$ alors $A_1$, $A_2$...$A_n$ forment une partition de $\Omega$
    et on a $p(B)=p(A_1\cap B)+p(A_2\cap B)+...+p(A_n\cap B)$}
    $A$ et $\overline{A}$ forment une partition de l'univers et on a $p(B)=p(A\cap B)+p(\overline{A}\cap B)$

    Solution

    Vous devez être abonné pour accéder à ce contenu...
    Infos abonnements

  3. Proposition 3: sachant que l'ordinateur a été retourné pendant sa période de garantie car son disque dur était défectueux, la probabilité que sa batterie le soit également est inférieure à 0,02
    Rappel cours

    Probabilité conditionnelle
    Soient $A$ et $B$ deux événements avec $p(A)\neq 0$.
    La probabilité que l'événement $B$ soit réalisé sachant que l'événement $B$ est réalisé se note $p_A(B)$
    et on a $p_A(B)=\dfrac{p(A\cap B)}{p(A)}$.

    Solution

    Vous devez être abonné pour accéder à ce contenu...
    Infos abonnements


Vous devez être abonné pour accéder à ce contenu...

Infos abonnements

Vidéo de l’exercice

Retour sur le corrigé
Vous devez être abonné pour accéder à ce contenu...

Infos abonnements

error: Ce contenu est protégé