Infos

Vous devez être inscrit pour accéder à ces informations.

Ceci vous permet de visualiser les ressources déjà vues et marquer à revoir celles qui nécessitent d'être retravaillées.

Inscrivez vous gratuitement ici....

Contenu

Nombre de solutions d’une équation f(x)=k

Application du théorème des valeurs intermédiaires

Exercice | temps recommandé inférieur à 5mn | Niveau 1 application directe du cours | séquence 3 du chapitre |

Vidéo de l’exercice

La fonction $f$ est définie sur $[0;10]$ et on donne son tableau de variation ci-dessous:

Déterminer le nombre de solutions de l'équation $f(x)=2$ en justifiant soigneusement la réponse.
Rappel cours

Théorème des valeurs intermédiaires
$f$ est une fonction continue sur $[a;b]$ (avec $a Si $k$ est un réel compris entre $f(a)$ et $f(b)$ alors il existe au moins un réel $c\in [a;b]$ tel que $f(c)=k$.
Cas où la fonction est monotone
Si $f$ est continue sur $[a;b]$ et strictement monotone alors pour tout réel $k$ compris entre $f(a)$ et $f(b)$ l'équation $f(x)=k$ admet une unique solution.
$f$ strictement monotone signifie que $f$ est strictement croissante (ou strictement décroissante).

Aide

Il faut distingueur les cas $x\in [0;1]$ et $x\in [1;10]$

Solution

Vous devez être inscrit pour accéder à ce contenu gratuitement!
INSCRIPTION


Inscrivez-vous pour accéder à ce contenu gratuitement!

INSCRIPTION

Vidéo de l’exercice

Retour sur le corrigé
Vous devez être abonné pour accéder à ce contenu...

Infos abonnements